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Abstract  

In many mechanical systems research scenarios, including in particular control and monitoring of 

mechanical devices, reconstruction of external loads acting on a system is a matter of great importance. The 

paper provides taxonomy and review of available dynamic load identification methods in cases when a direct 

load applied to the structure is required to be reconstructed. Methods based on frequency and time domains as 

well as those relying on statistical and soft computing approaches are described. The authors present methods 

in possibly broad manner, including initial assumptions, workflow and some of the equations. For that reason, 

reader is able to initially assess methods' potential in particular applications and choose the method which 

best fit his needs. 

 

Keywords: load reconstruction, inverse problem, force identification, structural health monitoring 

 

PRZEGLĄD METOD REKONSTRUKCJI SIŁY WYMUSZENIA 
 

Streszczenie  

W wielu scenariuszach badawczych dotyczących układów mechanicznych, w szczególności sterowania i 

monitorowania urządzeń mechanicznych, rekonstrukcja obciążeń zewnętrznych działających na układ ma 

ogromne znaczenie. W artykule przedstawiono taksonomię i przegląd dostępnych metod identyfikacji 

obciążeń dynamicznych bezpośrednio przyłożonych do obiektu na podstawie mierzonych sygnałów 

odpowiedzi. Opisano metody operujące w dziedzinie częstotliwości i czasu, a także te oparte na podejściu 

statystycznym i naturalnych metodach obliczeniowych. Autorzy przedstawiają metody w możliwie szeroki 

sposób, uwzględniając wstępne założenia, sposób postępowania i niektóre równania. Z tego powodu 

czytelnik jest w stanie wstępnie ocenić potencjał metod w poszczególnych aplikacjach i wybrać tę, która 

najlepiej odpowiada jego potrzebom. 

 

Słowa kluczowe: rekonstrukcja wymuszenia, problem odwrotny, identyfikacja siły, monitorowanie stanu struktur 

 
1. INTRODUCTION  

 

The last twenty years resulted in a rapid 

development of the structural health monitoring 

(SHM) and control systems. The classic SHM 

system has a structure presented in Figure 1 [1].  

It is a hierarchical structure, where at the lower 

level SHM system handles management of the 

monitoring of sub-systems. The results obtained at 

this level are helpful in taking decisions concerning 

the way of exploiting and maintenance of a given 

subgroup. The execution part consists of three basic 

modules: 

− a diagnostics module, 

− a module monitoring operating conditions, 

external excitation forces in particular. 

− a database containing material models and 

damage accumulation models. 

A classic control scheme has a structure 

presented in fig. 2. In many typical control 

scenarios - in particular when control setup is used 

for dealing with vibration control, identification of 

external disturbation can significantly benefit the 

control algorithm. It is especially important when 

dealing with nonlinear dynamics or time-varying 

systems. 

Surprisingly, although much work has been 

devoted to both detecting damage in case of SHM 

systems and developing control algorithms in case 

of control systems, in neither of these areas a large 

comprehensive review of force identification 

techniques has been provided. In fact, the review by 

[2] is the only one that provides recent overview on 

the subject. That fact is particularly disturbing as, in 

the opinion of the authors, reliable prediction of 

damage growth in SHM or reliable control of 

nonlinear systems is impossible without an external 

force identification component [3]. 

In order to compensate for these disparities, the 

authors present an attempt to systematize the load 

identification methods and present an overview of 

these methods. It is prepared in such a way that 

based on its reading, the reader could conduct a 

preliminary assessment of algorithms and choose 

best for his needs. 

https://doi.org/10.29354/diag/110241
mailto:zdw@agh.edu.pl


DIAGNOSTYKA, Vol. 20, No. 3 (2019)  

Mendrok K, Dworakowski Z.: A review of methods for excitation force reconstruction 

 

2 

Fig. 1. Hierarchical scheme of an SHM system structure 
 

 
Fig. 2. Basic control scheme 

 

 Consecutive methods are therefore not only 

mentioned, but their mechanism of action is briefly 

described taking into account the design and 

calculation schemes. In addition to review by [2], 

authors focus not only on statistical approach, but 

also provide wider scope of possible force 

reconstruction methods, including time and 

frequency domain ones as well as those that are 

based on soft computing approach. Issues related to 

regularization were not included in scope of the 

article, as the comprehensive reviews of that area 

were already provided [2, 4]. 

The organization of this review is as follows: 

Section 1 provides introduction to the subject, 

section 2 introduces taxonomy of load 

reconstruction methods, sections 3, 4 and 5 describe 

methods based on frequency, time-domain and 

statistical dependencies, respectively, section 6 

provides brief description of soft-computing 

methods used in scope of force identification, 

finally, section 7 concludes the article. 

 

2. SOURCES OF DATA AND METHODS' 

TAXONOMY 

 

Vast majority of load identification methods use 

as inputs data that are acquired using 

accelerometers. However, velocity measurements 

or displacement measurements can also be used to 

this end. The velocity measurements are usually 

performed with laser vibrometers [5], the 

displacements using e.g. vision systems [6]. 

However, both these non-contact solutions require 

expensive equipment and complex setup procedures 

which hinder their practical applicability. The load 

can also be derived from local strain measurements 

which, again, can be performed using a variety of 

ways including e.g. vision systems [6], x-ray 

measurements [7] or others. For a good review of 

this area reader is referred to work by Grediac et al. 

[8] The most-well-known division of force 

identification methods is based on differences in the 

type of estimation algorithms (See fig. 3). 

 

 

Fig. 3. Taxonomy of load reconstruction methods 

The presented methods have different 

assumptions regarding applicability and they are 

presented in the following subsections. Generally, it 

can be stated that the methods from the 

deterministic group, which are based on linear 

models, are suitable for such systems. For nonlinear 

systems, soft-computing-based methods are 

proposed. 

 

3. FREQUENCY DOMAIN METHODS 

 

In physical systems, where forces present have a 

harmonic character (are generated by imbalance of 

rotating machines parts), or where no precise time 

histories of force excitation are needed, but only 

amplitude and frequency distribution (transfer path 

analysis, analysis of fatigue wear), applying  

methods in frequency domains for force 

identification is reasonable. They are simpler, and 

as such require less computational power. This 

feature is significant when it is necessary to 

perform identification in real time. 

 

3.1. Methods based on frequency characteristics  

This is probably the most popular method of 

excitation forces identification. Its application can 

be found in multiple papers [9-12] Its principle of 

operation can be presented as follows: performing 

measurement of the spectrum Y(ω) of responses at a 

certain number of measurement points n allows the 

identification of the vector of forces F(ω), 

designating the pseudo-inverse matrix of the matrix 

of FRFs H(ω) (of the size n x m), according to the 

dependencies: 

 )()(][)(  YHF = +   (1) 

Some elements of the matrix [H(ω)] can be 

designated directly with experiments using, for 

example, the method of impulse test. It should be 

noted that if, in the considered cases, the Maxwell 

principle of reciprocity is met for the object, the 
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impulse excitation can be applied both at the point 

in which the force is present, and at the point of 

signal response measurement (then the signal 

response is measured at the point and in the 

direction of the forces present). Designating 

experimentally all the required FRFs is not possible 

due to, among others, the difficulties of exciting 

vibration of the object at a tangent to its external 

surface without implementing local modification of 

the object. This creates the necessity to apply, for 

the definition of certain elements of the matrix 

[H(ω)] a modal model of the considered object. In 

modal tests, usually 1, 2 or very rarely 3 or more 

rows or columns of the matrix [H(ω)] are 

designated. The remaining elements are defined by 

assuming the reciprocity principles. The matrix of 

FRFs can also be synthesized on the basis of a FEM 

model. Because the FRF matrix [H(ω)] in general is 

not square (n x m) it cannot simply be inverted, 

Therefore pseudo-inversion with SVD or Moore-

Penrose algorithm should be applied. In cases when 

the required FRFs of the object are unavailable, 

they can be synthesized on the basis of knowledge 

of the object’s FE model [13] or on the basis of a 

modal model [10].  

Another method based on the frequency  

characteristics is active path tracking [14]. The best 

fit between calculated responses and measured ones 

is achieved using the least squares method. 

When the defined objective function is met, it 

can be accepted that the actual forces present in the 

transfer paths of propagating energy are equal to the 

values assumed in calculations. By using this 

method, knowledge of the structure is especially 

important in order to accurately identify all the 

places where energy is transferred from the source 

to the place where the response is measured. 

 

3.2. Dynamic stiffness method 

Another method of force identification on the 

basis of measuring responses operating in the 

frequency domain is the method of dynamic 

stiffness [15]. It may be used where the element 

connecting the source of the force with the rest of 

the structure has a lower stiffness than the stiffness 

of the rest of the system. For this type of elements 

the dynamic stiffness characteristic K(ω) is 

designated, and force is expressed on the basis of its 

knowledge. In the presented method, displacement 

of both sides of the connecting element is 

measured. on the side of the force source - Ys(ω) 

and on the structure side, the receiver of the 

transferred energy - Yt(ω). 

The measurement of both spectra Ys(ω) and 

Yt(ω) must be performed simultaneously. When 

designating dynamic stiffness, the connecting 

element should be subjected to initial force similar 

to the one that is present under normal work 

conditions in the structure. 

 

3.3. Modal filtration method 

The modal filter is a tool for extracting the 

modal coordinates of each individual mode from 

the system outputs by mapping the response vector 

from the physical space to the modal space [16-18]. 

Application of the modal filter to force 

identification proceeds in four major steps [19]: 

1. Transfer the outputs of the system from physical 

coordinates to modal coordinates using modal 

filters. 

2. Determine the number of uncorrelated system 

inputs based on the weighted modal coordinates. 

3. Locate these unknown inputs. 

4. Calculate the amplitude of these inputs. 

The structure of the k-th modal filter, which 

corresponds with the k-th pole of the transfer 

function H(ω), requires introduction of a reciprocal 

modal vectors (RMVs) denoted as  k. RMVs should 

be orthogonal with respect to the modal vectors and 

thanks to this they can be applied to the 

decomposition of the system responses to modal 

coordinates. Then, the excitation force can be 

calculated from the formula given in a matrix form: 

][][][ = +TF    (2)      

where [F] refer to excitation forces matrix (its 

columns are nonzero vectors only for locations 

where the excitation force appeared), [] refer to 

the modal vectors matrix and [] denotes matrix 

which contain vectors of weighted modal 

coordinates. 

 

3.4. Method based on mutual energy theorem 

In 1892 Heaviside formed the mutual energy 

theorem [20]. This is used in acoustics to identify 

the sources of sounds in rooms [21]. This method 

was also used to estimate excitation forces in 

mechanical structures in the frequency domain [22]. 

To illustrate the method let's assume that four 

measurement points and four experiments are 

performed: the procedure and the way of 

conducting the experiments is presented in fig. 5. 

Then, dependency used to estimate the force 

takes the form  

aa YFYF  1][ −=     (3)  

Where: Fa refers to identified force vector, ][Y  

refers to matrix of responses velocities measured in 

consecutive experiments and consecutive points 

and 
aYF  refers to vector of power calculated as a 

product of known forces from consecutive 

experiments and velocity caused by unknown 

identified force. 

The method can be used only for linear systems. 

 

4.1. Quality function minimization method 

This method belongs to the most often used 

iterative methods [23-25]. It may be used for 

reconstructing the force time history on the basis of 

knowledge of responses. In particular, it is suitable 

for the identification of impulse force. It is based on 

the minimization of the objective function as a 
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measure of the fit between the measured response 

signal and the calculated one. We can define the 

objective function as a difference between the 

measured response y to the identified force and the 

response calculated q by the simulation of the 

model of the system. 

 

Fig. 4. The consecutive experiments necessary 

for the application of the mutual-energy-

theorem-based method 

 

4. TIME DOMAIN METHODS 

 

Another method which identifies load with use 

of minimization of quality function is presented in 

the paper by [26]. Comparing with other researches, 

the method is applicable to fully general case. It can 

be applied to both linear and elasto-plastic systems, 

the second class of systems is solved with use of 

virtual distortions method. The virtual distortions 

method proposed by [27]. The concept of reanalysis 

of a structure with modified parameters using fields 

of virtual distortions and an influence matrix is 

presented. This enables the calculation of updated 

structure responses under the influence of defined 

stresses, whose parameters undergo change. These 

changes are modeled by a field of virtual distortions 

placed on the structure, without the necessity of 

repeating the stiffness matrix calculations. Another 

level of method generality is presented by its ability 

to deal with underestimated cases. The 

identification is formulated analytically as a 

complex optimization problem: find the equivalent 

impact scenario that: 

1. minimizes the potentially pre-conditioned 

mean-square distance between simulated and 

measured dynamic responses in sensor locations 

and 

2. is optimum according to given heuristic 

conditions. 

With the objective function defined in either of 

these ways, it is necessary to select the methods for 

its minimization. Here, methods based on dynamic 

programming [22, 23, 28], evolutionary algorithms 

[24,29] or others [30,31] are applied. The advantage 

of these methods is their ability to be applied in 

non-linear systems, a drawback is the large 

calculation power and the long time required for 

calculations. 

 

4.2. The sum of weighted accelerations method 

The sum of weighted accelerations technique 

(SWAT) helps in force identification on the basis of 

vibration acceleration signal responses summed 

with suitable weighting [32]. Summing signals in 

the time domain has low sensitivity to numerical 

errors. The only obstacle which can be encountered 

when applying these methods is the definition of 

weight values for scaling time histories. There are 

two ways to designate weight. The first requires 

knowledge of the mode shapes of the system in a 

free state, the second requires that the history of 

vibration decay is possessed.  

The limitation of the method is the lack of 

possibilities for calculating the spatial distribution 

of forces, it only allows the calculation of the sum 

of all external forces and moments regarding the 

center of mass. However, for many applications 

such knowledge is sufficient, and simplified 

calculations increase its robustness to measurement 

noise.  

The way this method is realized can be 

described in two stages. Firstly, the dependency 

between internal forces should be introduced, and 

as a result of these displacements, modal 

coordinates. In the second step, it is necessary to 

weight and calculate the force present on the basis 

of the sum of weighted accelerations. The 

mathematical apparatus of the method is based on 

modal transformation. 

Due to some numerical issues the number of 

measured accelerations must be equal to the 

number of modes used for calculations. 

 

4.3. Method based on state estimation 

The next method of force identification, which 

was imported from automatics, uses the concept of 

state estimation and prediction of inputs. It can be 

based on various principles, two most commonly 

used are based on Kalman filter [33-36] or state 

observer [37, 38] with unknown input signals. This 

type of observer, on the basis of the system 

responses signals, identifies its states as well as 

input signals. The method of force identification 

using such an observer is resistant to measurement 

noise and may operate in real time. Details of the 

design procedure for this type of observer can be 

found in [39]. 

 

4.4. Parametric transfer function method 

The use of regressive parametric models for the 

identification of input signals can be seen in 

automatics. Adaptation of this method for 

mechanical systems and force identification can be 

found in multiple works [40, 41]. Its basic stages 

are: selection of the structure and identification of 
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the regressive parametric model, then inversion of 

the model and input to the inverse model of the 

response signal, most often in vibration acceleration 

form, with the aim of calculating the forces causing 

the response. The basic problem for solutions is 

therefore inverting regressive models. In order to 

generate responses for an inverse linear dynamic 

model, it is necessary for it to be proper or strictly 

proper [42], linear, stationary and minimum-phase. 

 

4.5. Sample Force Dictionary Method 

An interesting method of impulse load 

reconstruction was presented in [43]. Authors aim 

to reconstruct not only time history of acting force 

but also place of an impact. They claim that in most 

practical cases the external loads are not arbitrary 

distributed in time and space and these a priori 

information should be taken into account in the 

estimation process. In case of an impact acting on a 

structure, the force history is mainly defined by the 

magnitude and the contact duration of the colliding 

bodies. The profile of the force history looks 

approximately like the pulse function shown. Now 

if one determines this shape function, then the force 

history of an impact depends only on the pulse 

width tw, the magnitude value of this pulse atw;tm 

and time at which the magnitude is reached tm. 

Thus, the external force history can by described as 

function of these parameters. The shape function 

can be normalized so that the magnitude becomes a 

scaling factor of the shape function. Shape 

functions may be known from experimental 

investigations or approximated by appropriate 

impact models. However, if the impact is intended 

to be reconstructed using measured structural 

responses the relation between response magnitude 

of and force magnitude needs to be identified in 

form of impulse responses or Markov parameters. 

A similar solution for frequency domain was 

proposed by [44]. 

 

5. STATISTICAL APPROACH TO FORCE 

IDENTIFICATION 

 

Methods presented in this section, along with 

soft computing approaches presented in sec. 6 can 

be applied when there is insufficient knowledge on 

the subject of the object dynamics to formulate 

deterministic dependencies, which allow the 

calculation of forces, when the dynamics are so 

complicated that their calculation would be 

impossible to perform with the help of deterministic 

dependencies or when input information is  

uncertain. Section is devoted to methods based on 

multiple regression and inverse structural filter. 

 

5.1. Force identification using multiple 

regression 

Identification of operational forces using the 

method of multiple regression allows the estimation 

of forces acting on a structure during its operation 

in real time. It is effective at various states of 

loading and working conditions. In order to utilize 

this method, firstly the connection between the 

identified force f  and the measured responses yr 

should be formulated as a function of yr and 

regression coefficients. These coefficients are then 

found using e.g. an optimization approach [45, 46]. 

In order to identify forces with the help of 

regression methods, data is necessary for estimation 

of the regressive model. It should be divided into 

two parts: the first for model estimation, the second 

for its verification. More on the subject of 

regression analysis can be found in the specialist 

literature concerning this type of problem [47]. The 

great advantage of methods based on regression 

analysis is the fact that force may be estimated on 

the basis of knowledge of process variables. In such 

cases, it is not necessary to perform additional 

measurements of structure response, which are 

often very difficult or almost impossible to perform. 

 

5.2. Inverse structural filter 

The method of the inverse structural filter is 

used for force identification in non-minimum-phase 

and non-collocated systems [48]. An example of 

such cases is the problem of forces developing in 

wheel-rail systems. Calculating forces with the help 

of an inverse structural filter is performed using the 

formula: 


−

=

+−=
1

0

1

rN

i

lkik yrf    (4)   

where fk is the k-th sample of the identified force 

vector, y is the response vector, while ri is the i-th 

filter coefficient. Filter order is defined by Nr, while 

l represents the non-casual lead of the filter. For 

systems with multiple inputs and outputs (MIMO), 

the filter coefficients r are matrices of the 

size
sa nn   (number of inputs   number of 

outputs). These coefficients are the pseudoinverse 

Markov parameters of the system. Designating their 

values is connected with the necessity to solve the 

deconvolution problem. 

 

6. SOFT COMPUTING FOR FORCE 

IDENTIFICATION 

 

Similarly to methods described in the previous 

section, soft computing (SC) approaches are used in 

cases when there is not enough information for 

calculation of a deterministic model. There are 

three categories of SC methods, which are arguably 

the most common and are broadly employed in 

different tasks related to mechanical engineering: 

artificial neural networks (ANNs), evolutionary and 

other natural optimization algorithms and fuzzy 

approaches. Although they are often used in task of 

force identification, particularly for impact force 

reconstruction [49, 50], compilation of theory 

related to their usage would significantly exceed the 

scope of the paper. For that reason authors focus 

only on brief explanation of their principles of 

operation and scope of operational perspectives, 
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without recall of particular equations and 

algorithms. A good introduction to SC methods 

from mechanical engineering point of view can be 

found in tutorial by Worden et al. [51]. Brief 

summary of their usage in various fields of 

mechanical engineering is included e.g. in [52, 53]. 

 

6.1. Force identification with use of Artificial 

Neural Networks 

Artificial neural networks are constructed from 

a definite number of basic calculation units known 

as neurons. Particular types of neural networks 

differ in the architecture of neurons placement, flow 

of information between them, activation functions, 

methods of learning, etc. and are widely discussed 

in the literature [51, 54, 55]. The application of 

artificial neural networks for force identification is 

described in multiple papers [49, 50, 56-60]. 

Because a machine as a dynamic system may find 

itself in various phases of loading (run-up, work 

with full load, without load, run-down etc.), in 

order to accurately identify the operational forces 

large amount of training data is usually required. 

Cooperation of several networks was reported to 

render better results in such cases: The problem can 

be assigned to one of the categories by one network 

and then passed to a "specialist" - that is: a network 

trained on similar type of data [62]. 

 

6.2. Force identification with use of Fuzzy Logic 

Similarly to artificial neural networks, fuzzy 

logic can be used for force identification [63]. With 

its help, it is possible to formally define imprecise 

and multi-meaning terms such as large force or 

small force which allows for easy generalization 

and incorporation of expert knowledge into the 

system . In the design of fuzzy sets, the most 

important aspect is the definition of the so-called 

consideration set. In the case of the multi-meaning 

term of "large force", other values will be 

considered as too large if the consideration set is 

limited to the interval [0, 2 N], and others if the 

range of change is [0, 10000 N]. 

The identification of forces with this method 

takes place according to similar algorithms to those 

in the method using artificial neural networks, 

presented in the previous sub-section. Practical 

application of fuzzy logic used for force 

identification revealed that fuzzy reasoning more 

effectively classifies the work state of the machine, 

but is worse at identifying force in relation to neural 

networks [58]. 

A common approach rely on combination of 

ANN-based architecture with fuzzy reasoning to 

build neuro-fuzzy systems. Such systems are 

recently more and more popular in tasks of dynamic 

system identification and force identification [64-

66]. 

 

6.3. Force identification with natural 

optimization algorithms 

The concept of using natural optimization 

algorithms for force identification in mechanical 

structures is based on the objective function 

minimization defined on the difference between 

measured system responses and responses obtained 

from the model simulation [24]. This is the 

objective function minimization method described 

in Sub-section 4.1. For minimization of the 

objective function purposes many different natural 

optimization methods can be used, including 

evolutionary and genetic algorithms [59, 61, 67, 

68], swarm-intelligence algorithms [29, 60] and 

others. They are used due to the large scale of the 

problem, the multi-modality of the optimization 

problem, as well as the existence of many local 

minima, which in practice hinder the process of 

force identification (solutions uniqueness). 

In the task of force identification such solutions 

are often used as a primary step which is later 

followed by local optimization algorithms [69] or 

as a model-identification step [70]. 

 

7. SUMMARY 

 

The authors presented a detailed review of 

methods for identification of excitation forces, 

divided into frequency-domain-based, time-

domain-based, employing statistical dependencies 

and soft computing approach. The idea of this 

review was to enable the reader to make a 

preliminary assessment of the suitability of the 

methods without further literature studies. Works 

that extend the scope of presented methods are, 

however, pointed out and briefly described. 
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